

Welcome to Read the Docs

This is an autogenerated index file.

Please create an index.rst or README.rst file with your own content
under the root (or /docs) directory in your repository.

If you want to use another markup, choose a different builder in your settings.
Check out our Getting Started Guide [https://docs.readthedocs.io/en/latest/getting_started.html] to become more
familiar with Read the Docs.

Index

Contributor Covenant Code of Conduct

Our Pledge

In the interest of fostering an open and welcoming environment, we as
contributors and maintainers pledge to making participation in our project and
our community a harassment-free experience for everyone, regardless of age, body
size, disability, ethnicity, sex characteristics, gender identity and expression,
level of experience, education, socio-economic status, nationality, personal
appearance, race, religion, or sexual identity and orientation.

Our Standards

Examples of behavior that contributes to creating a positive environment
include:

	Using welcoming and inclusive language

	Being respectful of differing viewpoints and experiences

	Gracefully accepting constructive criticism

	Focusing on what is best for the community

	Showing empathy towards other community members

Examples of unacceptable behavior by participants include:

	The use of sexualized language or imagery and unwelcome sexual attention or
advances

	Trolling, insulting/derogatory comments, and personal or political attacks

	Public or private harassment

	Publishing others’ private information, such as a physical or electronic
address, without explicit permission

	Other conduct which could reasonably be considered inappropriate in a
professional setting

Our Responsibilities

Project maintainers are responsible for clarifying the standards of acceptable
behavior and are expected to take appropriate and fair corrective action in
response to any instances of unacceptable behavior.

Project maintainers have the right and responsibility to remove, edit, or
reject comments, commits, code, wiki edits, issues, and other contributions
that are not aligned to this Code of Conduct, or to ban temporarily or
permanently any contributor for other behaviors that they deem inappropriate,
threatening, offensive, or harmful.

Scope

This Code of Conduct applies both within project spaces and in public spaces
when an individual is representing the project or its community. Examples of
representing a project or community include using an official project e-mail
address, posting via an official social media account, or acting as an appointed
representative at an online or offline event. Representation of a project may be
further defined and clarified by project maintainers.

Enforcement

Instances of abusive, harassing, or otherwise unacceptable behavior may be
reported by contacting the project team at info@cyberbotics.com. All
complaints will be reviewed and investigated and will result in a response that
is deemed necessary and appropriate to the circumstances. The project team is
obligated to maintain confidentiality with regard to the reporter of an incident.
Further details of specific enforcement policies may be posted separately.

Project maintainers who do not follow or enforce the Code of Conduct in good
faith may face temporary or permanent repercussions as determined by other
members of the project’s leadership.

Attribution

This Code of Conduct is adapted from the Contributor Covenant [https://www.contributor-covenant.org], version 1.4,
available at https://www.contributor-covenant.org/version/1/4/code-of-conduct.html

For answers to common questions about this code of conduct, see
https://www.contributor-covenant.org/faq

 Any contribution that you make to this repository will
be published under the terms of the Apache 2 License, as dictated by that
license [http://www.apache.org/licenses/LICENSE-2.0.html]:

5. Submission of Contributions. Unless You explicitly state otherwise,
 any Contribution intentionally submitted for inclusion in the Work
 by You to the Licensor shall be under the terms and conditions of
 this License, without any additional terms or conditions.
 Notwithstanding the above, nothing herein shall supersede or modify
 the terms of any separate license agreement you may have executed
 with Licensor regarding such Contributions.

Contributors must sign-off each commit by adding a Signed-off-by: ...
line to commit messages to certify that they have the right to submit
the code they are contributing to the project according to the
Developer Certificate of Origin (DCO) [https://developercertificate.org/].

Contributing

We love pull requests from everyone.

Create a Pull Request

	Fork the repository: https://help.github.com/articles/fork-a-repo

	Create a branch in your fork: https://help.github.com/articles/creating-and-deleting-branches-within-your-repository

	Pull the branch as a pull request targeting cyberbotics:webots_ros2@master: https://help.github.com/articles/creating-a-pull-request-from-a-fork

	Wait for our unit tests and review of your pull request.

Development Guideline

	Avoid comitting files that exist elsewhere. Instead we should link to the source of these files.

	Avoid comitting files that can be re-created from other files using a Makefile, a script or a compiler.

webots_ros2 ROS2 packages

[image: _images/webots_ros2.svg]Build Status [https://travis-ci.com/cyberbotics/webots_ros2]
[image: _images/:license-Apache%202.0-blue.svg]license - apache 2.0 [https://opensource.org/licenses/Apache-2.0]
[image: _images/webots_ros21.svg]Version [http://wiki.ros.org/webots_ros2]

These packages provide an interface for controlling robots simulated in Webots using ROS2.

All the documentation and tutorials are available on the ROS wiki [http://wiki.ros.org/webots_ros2].

[image: _images/webots_ros2_universal_robot.png]webots_ros2 screenshot
[image: _images/abb.png]abb.png

Acknowledgement

 [image: rosin_logo]

 <no title>

 Description
Describe the bug you are fixing, the new feature your are introducing or the enhancement you are proposing.

Related Issues
This pull-request fixes issue #

Affected Packages
List of affected packages:

	webots_ros2_A

	webots_ros2_B

Tasks
Add the list of tasks of this PR.

	[] Task 1

	[] Task 2

Additional context
Add any other context about the pull-request here.

 <no title>

name: Bug report
about: Create a report to help us improve these components and systems

Describe the Bug
A clear and concise description of what the bug is.

Steps to Reproduce

	Go to ‘…’

	Click on ‘….’

	Scroll down to ‘….’

	See error

Expected behavior
A clear and concise description of what you expected to happen.

Affected Packages
List of affected packages:

	webots_ros2_A

	webots_ros2_B

Screenshots
If applicable, add screenshots to help explain your problem.

System

	Webots Version: [e.g., R2019b, R2020a revision 1]

	ROS Version: [e.g., Dashing, Eloquent]

	Operating System: [e.g., Windows 10, Linux Ubuntu 18.04, macOS Mojave]

	Graphics Card: [e.g., NVIDIA GeForce RTX 2080 11 GB, AMD Radeon RX 580 8GB, etc.]

Additional context
Add any other context about the problem here.

 <no title>

name: Documentation
about: Fix or improve the documentation

Documentation page(s) concerned
Link to the concerned page.

What is the problem with the current documentation?
A clear and concise description of what’s wrong with the current documentation.

Describe how you would fix it
A clear and concise description of what need to be changed.

 <no title>

name: Feature request
about: Suggest an idea

Is your feature request related to a problem? Please describe.
A clear and concise description of what the problem is. Ex. I’m always frustrated when […]

Describe the solution you’d like
A clear and concise description of what you want to happen.

Describe alternatives you’ve considered
A clear and concise description of any alternative solutions or features you’ve considered.

Additional context
Add any other context or screenshots about the feature request here.

 Changelog for package webots_ros2

Changelog for package webots_ros2

1.0.1 (2020-XX-YY)

	Removed the ‘webots_ros2_desktop’ package.

	Added missing ‘webots_ros2_demos’, ‘webots_ros2_epuck’ and ‘webots_ros2_msgs’ packages as dependencies.

1.0.0 (2020-09-01)

	Improved support for macOS

0.0.3 (2020-06-15)

	Updated to Webots R2020a

0.0.2 (2019-09-23)

	Moved sources to cyberbotics/webots_ros2 (https://github.com/cyberbotics/webots_ros2)

	Added a ‘webots_ros2_msgs’, ‘webots_ros2_core’, ‘webots_ros2_desktop’, ‘webots_ros2_examples’ ‘webots_ros2_abb’ and ‘webots_ros2_universal_robot’ packages

	Added support for ABB robots.

0.0.1 (2019-08-09)

	Initial version

 Changelog for package webots_ros2_abb

Changelog for package webots_ros2_abb

1.0.0 (2020-09-01)

	Use the webots_ros2_core::webots_robotic_arm_node node

0.0.3 (2020-06-15)

	Initial version

 Changelog for package webots_ros2_core

Changelog for package webots_ros2_core

1.0.2 (2020-10-12)

	Fixed support for 3D Lidars

	Fixed Webots executable discovery

1.0.0 (2020-09-01)

	Added a universal ‘webots_differential_drive_node’ node.

0.0.4 (2020-07-03)

	Fixed dependencies issue.

0.0.3 (2020-06-15)

	Added support for multi robots.

	Added a new TfPublisher class to publish transforms of all the Solid nodes of the robot (if the robot supervisor field is true).

	Added the possibility to run nodes in synchronized mode (using the ‘synchronization’ parameter).

	Added better support for differential drive robots (‘WebotsDifferentialDriveNode’ class).

	Added CameraDevice, LEDDevice and LaserDevice that create correspoding ROS2 topics

0.0.2 (2019-09-23)

	Initial version

 webots_ros2_core

webots_ros2_core

This package contains essential building blocks for running Webots simulation, such as Webots launcher, ROS2 wrappers for Webots devices and other relevant utils.

Reference Manual

webots_launcher

The webots_launcher is a custom ROS action used to start Webots from your launch file, it has the following parameters:

	world: defines the path to the simulation world file to load.

	mode: defines the simulation mode (pause, realtime, run or fast) with which Webots should be started (realtime is set by default).

	gui: if set, Webots starts with a minimal graphical user interface, this is useful to use on a server for example.

`webots_launcher` usage exampleimport launch
from launch import LaunchDescription
from webots_ros2_core.webots_launcher import WebotsLauncher

def generate_launch_description():
 # Webots
 webots = WebotsLauncher(
 world=world,
 mode=mode,
 gui=gui
)

 return LaunchDescription([
 webots,
 # Shutdown launch when Webots exits.
 RegisterEventHandler(
 event_handler=launch.event_handlers.OnProcessExit(
 target_action=webots,
 on_exit=[EmitEvent(event=launch.events.Shutdown())],
)
)
])

controller_launcher

The webots_launcher is a custom ROS node launcher used to start Webots controller. It has the same API as launch_ros.actions.Node, but it adds necessary libraries needed for your ROS node to work with Webots.

`controller_launcher` usage exampleimport launch
from launch import LaunchDescription
from webots_ros2_core.webots_launcher import WebotsLauncher

def generate_launch_description():
 # Webots
 webots = WebotsLauncher(
 world=world,
 mode=mode,
 gui=gui
)

 controller = ControllerLauncher(
 package=package,
 node_executable=executable,
 arguments=[
 '--webots-robot-name', robot_name,
 '--webots-node-name', node_name
],
)

 return LaunchDescription([
 webots,
 controller,

 # Shutdown launch when Webots exits.
 RegisterEventHandler(
 event_handler=launch.event_handlers.OnProcessExit(
 target_action=webots,
 on_exit=[EmitEvent(event=launch.events.Shutdown())],
)
)
])

Python Modules

This package includes the following Python modules that can be used from within other nodes to easily create an interface between a simulated robot and ROS2.

webots_node

This module provides the WebotsNode class that is used as a base class for all the other nodes.
It creates the interface between Webots and ROS and publishes the clock topic.

utils

This module provides the following utility functions:

	get_webots_home: returns the path to the Webots installation directory. None is returned if Webots is not found.

	get_webots_version: returns the version of Webots as a string.

	append_webots_lib_to_path: adds the Webots lib folder to the library path.

	append_webots_python_lib_to_path: adds the Webots Python API to the Python path.

joint_state_publisher

This module provides the JointStatePublisher class that is used to publish joint states.

trajectory_follower

This module provides the TrajectoryFollower class that is used to provide an action server to move the joints.

Creating ROS2 Driver

ROS drivers are considered to be ROS nodes which have a tight interaction with a robot (physical or simulated).
Therefore, in the further text, we will explain how to create ROS2 node that tightly interacts with the simulated robot in Webots.

Universal Launcher

In webots_ros2_core package, we provide robot_launch.py launcher that should automatically create ROS2 services and topics based on Webots’ robot description (popularly called ROSification [https://roscon.ros.org/2013/wp-content/uploads/2013/06/ROSCon2013_rosify_robot.pdf]).
It is enough to provide path to Webots world file with the robot inside, for example:

ros2 launch webots_ros2_core robot_launch.py \
 world:=$(ros2 pkg prefix webots_ros2_universal_robot --share)/worlds/universal_robot_rviz.wbt

This command will run Webots with UR5 [https://cyberbotics.com/doc/guide/ure] and publish joint state positions, transformations and robot description.

Do not get confused by $(ros2 pkg prefix webots_ros2_universal_robot --share) as it will simply return path to share directory of webots_ros2_universal_robot package. Alternatively, you can specify absolute path to universal_robot_rviz.wbt file.

Similarly, you can try with more complex example like TIAGo++:

ros2 launch webots_ros2_core robot_launch.py \
 world:=$(ros2 pkg prefix webots_ros2_tiago --share)/worlds/tiago++_example.wbt

To run more exhaustive list of robot_launch.py arguments you can use --show-args argument:

ros2 launch webots_ros2_core robot_launch.py --show-arguments

Custom Configuration

The universal launcher allows fine tunning of the ROS interface through ROS parameters [https://index.ros.org/doc/ros2/Tutorials/Parameters/Understanding-ROS2-Parameters/].
It means that the user can disable a device, change topic name, change publishing period and similar by changing the parameters.
To check all available parameters for your robot you should start your robot first, e.g. in case of TIAGO++:

ros2 launch webots_ros2_core robot_launch.py \
 world:=$(ros2 pkg prefix webots_ros2_tiago --share)/worlds/tiago++_example.wbt

and in the other terminal run:

ros2 param list /webots_driver

to see the list of available parameters.

At this point you can also save all parameters to YAML file for later use:

ros2 param dump /webots_driver

which will save the configuration to webots_driver.yaml by default.
You can open this file, change the configuration and load it later using node_parameters argument:

ros2 launch webots_ros2_core robot_launch.py \
 node_parameters:=./webots_driver.yaml \
 world:=$(ros2 pkg prefix webots_ros2_tiago --share)/worlds/tiago++_example.wbt

All parameters are named in the following format:

	[webots_device_name].[parameter] for Webots devices that expose one or more topics and services (e.g. DistanceSensor).

	[webots_device_name_1]+[webots_device_name_2]+[webots_device_name_n].[parameter] for multiple Webots devices that are coupled to create a single topics or service (e.g. Accelerometer, Gyro and InertialUnit devices are combined to publish to sensor_msgs/Imu topic).

	Robot wide parameters don’t have prefix (e.g. synchronization) and these parameters depend on Webots node implementation (e.g. webots_differential_drive_node).

Differential Drive

TIAGo++ has differential drive which has to be explicitly described.
For differential drive robots you should utilize webots_differential_drive_node which exposes the following parameters:

wheel_distance # Distance between the wheels (axle length) in meters
wheel_radius # Radius of the wheels in meters
left_joint # Name of Motor associated with the left wheel (default `left wheel motor`)
right_joint # Name of Motor associated with the right wheel (default `right wheel motor`)
left_encoder # Name of PositionSensor associated with the left wheel (default `left wheel sensor`)
right_encoder # Name of PositionSensor associated with the right wheel (default `right wheel sensor`)
command_topic # Topic name to which the node will be subscribed to receive velocity commands (of type `geometry_msgs/Twist`, default `/cmd_vel`)
odometry_topic # Topic name to which odometry data (of type `nav_msgs/Odometry`) will be published (default `/odom`)
odometry_frame # Name of of the odometry frame (default `odom`)
robot_base_frame # Name of the robot base frame (default `base_link`)

Make sure those parameters are correctly configured otherwise the node will crash.
Minimum wheel_distance and wheel_radius are required, but you will probably need to change left_joint, right_joint, left_encoder and right_encoder to suit your robot.
In case of TIAGo++ configuration file should look like this:

webots_driver:
 ros__parameters:
 left_encoder: wheel_left_joint_sensor
 left_joint: wheel_left_joint
 right_encoder: wheel_right_joint_sensor
 right_joint: wheel_right_joint
 wheel_distance: 0.404
 wheel_radius: 0.1955

Then, you can start the Webots:

ros2 launch webots_ros2_core robot_launch.py \
 executable:=webots_differential_drive_node \
 node_parameters:=$(ros2 pkg prefix webots_ros2_tiago --share)/resource/tiago.yaml \
 world:=$(ros2 pkg prefix webots_ros2_tiago --share)/worlds/tiago++_example.wbt

Now, topics /odom and /cmd should be availabe, so you can read odometry data (e.g. visualize in RViz) and control the robot (with e.g. teleop_twist_keyboard).

Robotic Arm

For robotic arm robots you should utilize webots_robotic_arm_node which exposes the following parameters:

prefix # prefix to be used for joints

This node will automatically publish the joints state and create an action server to perform trajectory following.

Custom Launcher File and Driver

In case a Webots device is not covered by the universal launcher or you prefer to create ROS interface differently you can build your ROS2 driver from scratch.
First, make sure you have created a new ROS2 package and call it my_webots_driver (you can check ROS’ tutorial given here [https://index.ros.org/doc/ros2/Tutorials/Creating-Your-First-ROS2-Package/]).
After the package is ready, you can create a driver, e.g. /my_webots_driver/my_webots_driver/driver.py and populate it with the following content:

import rclpy
from webots_ros2_core.webots_node import WebotsNode

class MyWebotsDriver(WebotsNode):
 def __init__(self, args):
 super().__init__('my_webots_driver', args=args)

def main(args=None):
 rclpy.init(args=args)
 my_webots_driver = MyWebotsDriver(args=args)
 rclpy.spin(my_webots_driver)
 my_webots_driver.destroy()
 rclpy.shutdown()

if __name__ == '__main__':
 main()

Notice that you have to inherit WebotsNode which contains basic functionality which allows interaction with a robot in Webots.
Also, you need to create a launch file /my_webots_driver/launch/robot_launch.py with the minimal content as following:

import os
from launch.actions import IncludeLaunchDescription
from launch.launch_description_sources import PythonLaunchDescriptionSource
from launch import LaunchDescription
from ament_index_python.packages import get_package_share_directory

def generate_launch_description():
 webots = IncludeLaunchDescription(
 PythonLaunchDescriptionSource(
 os.path.join(get_package_share_directory('webots_ros2_core'), 'launch', 'robot_launch.py')
),
 launch_arguments=[
 ('package', 'my_webots_driver'),
 ('executable', 'driver'),
 ('world', path_to_webots_world_file),
]
)

 return LaunchDescription([
 webots
])

The purpose of the launch file is to start Webots, your driver for Webots and to make sure everything is stopped once Webots closed.
Then, make sure the driver and the launch file are added to setup.py, run colcon build and your launch file should be ready to be executed:

ros2 launch my_webots_driver robot_launch.py

To extend the ROS interface you should go back to /my_webots_driver/launch/robot_launch.py and implement more features.
For example, in order to add a basic support for DistanceSensor [https://cyberbotics.com/doc/reference/distancesensor] MyWebotsDriver class can be extended as follows:

class MyWebotsDriver(WebotsNode):
 def __init__(self, args):
 super().__init__('my_webots_driver', args=args)
 self.sensor = self.robot.getDistanceSensor('my_distance_sensor')
 self.sensor.enable(self.timestep)
 self.sensor_publisher = self.create_publisher(Range, '/my_distance_sensor', 1)
 self.create_timer(self.timestep * 1e-3, self.publish_sensor_data)

 def publish_sensor_data(self)
 msg = Range()
 msg.header.stamp = self.get_clock().now().to_msg()
 msg.header.frame_id = 'my_distance_sensor'
 msg.field_of_view = self.sensor.getAperture()
 msg.min_range = self.sensor.getMinValue()
 msg.max_range = self.sensor.getMaxValue()
 msg.range = self.sensor.getValue()
 msg.radiation_type = Range.INFRARED
 self.sensor_publisher.publish(msg)

This example can work in conjunction automatic robot ROSification library provided by Webots.
Therefore, you can further extend the example above with start_device_manager(self, config):

class MyWebotsDriver(WebotsNode):
 def __init__(self, args):
 super().__init__('my_webots_driver', args=args)
 self.start_device_manager({
 'my_distance_sensor': {
 'disable': True
 }
 })
 self.sensor = self.robot.getDistanceSensor('my_distance_sensor')
 self.sensor.enable(self.timestep)
 self.sensor_publisher = self.create_publisher(Range, '/my_distance_sensor', 1)
 self.create_timer(self.timestep * 1e-3, self.publish_sensor_data)

 def publish_sensor_data(self)
 msg = Range()
 msg.header.stamp = self.get_clock().now().to_msg()
 msg.header.frame_id = 'my_distance_sensor'
 msg.field_of_view = self.sensor.getAperture()
 msg.min_range = self.sensor.getMinValue()
 msg.max_range = self.sensor.getMaxValue()
 msg.range = self.sensor.getValue()
 msg.radiation_type = Range.INFRARED
 self.sensor_publisher.publish(msg)

and Webots will automatically create ROS interface for other devices (other than my_distance_sensor) avaialble in the robot.

Examples

This Github repository contains a few good examples that you can use as the starting point:

	webots_ros2_example includes a very simple controller for Thymio (differential driver robot).

	webots_ros2_tiago is another differential drive robot simulation, but here WebotsDifferentialDriveNode class from webots_ros2_core is utilized to simplify differential drive implementation.

	webots_ros2_epuck is one more example with differential drive robot in which ROS services and topics are created for almost all sensors and actuators available on the robot.
This example also contains a list of instructions [https://github.com/cyberbotics/webots_ros2/blob/master/webots_ros2_epuck/EPUCK_ROS2] that explains how the simulation can be used in combination with different ROS2 packages like RViz and Navigation2.
Also, you will find this example useful if you plan later to control the real robot as we also support ROS2 driver for the real robot [https://github.com/cyberbotics/epuck_ros2].

 <no title>

 The files in this folder are coming from: https://github.com/matthew-brett/transforms3d

 Changelog for package webots_ros2_demos

Changelog for package webots_ros2_demos

1.0.0 (2020-09-01)

	Use the webots_ros2_core.webots_robotic_arm_node node

0.0.3 (2020-06-15)

	Initial version

 Changelog for package webots_ros2_epuck

Changelog for package webots_ros2_epuck

1.0.0 (2020-09-01)

	Use the webots_ros2_core::WebotsDifferentialDriveNode class

0.0.3 (2020-06-15)

	Initial version

 ROS2 for E-Puck

ROS2 for E-Puck

Here you will find instructions on how to use the e-puck ROS2 API.
This documentation is common for the physical (epuck_ros2 [https://github.com/cyberbotics/epuck_ros2]) and simulated (webots_ros2_epuck [https://github.com/cyberbotics/webots_ros2/tree/master/webots_ros2_epuck]) robot.

Getting Started

Please make sure that you have the robot driver running.
This will ensure that access to sensors and actuators is exposed through the ROS2 API.

Simulated Robot

The launch file starts Webots and ROS2 driver:

ros2 launch webots_ros2_epuck robot_launch.py

For the convience, you can also launch robot_with_tools_launch.py which includes robot_launch.py and robot_tools_launch.py, e.g.:

ros2 launch webots_ros2_epuck robot_with_tools_launch.py rviz:=true

This launch file has the same parameters as robot_tools_launch.py.

Physical Robot

This launch file starts e-puck driver for physical robot:

ros2 launch epuck_ros2 robot_launch.py

Tutorials

When you have the ROS2 driver running you can proceed with the tutorials.

Infra-red, Light Sensors, and LEDs

[image: ../_images/sensors_and_leds.png]e-puck2 camera and infrared sensorsE-puck2 has 8 infra-red sensors (named as ps0-7) all of which are mapped to the same name ROS2 topics of type sensor_msgs/Range [https://github.com/ros2/common_interfaces/blob/master/sensor_msgs/msg/Range.msg].
Therefore, you can obtain a distance from a sensor as follows:

ros2 topic echo /ps1

Besides infrared sensors, e-puck2 is upgraded with long-range ToF sensor positioned just above the camera.
Data from this sensor is also exposed through the sensor_msgs/Range [https://github.com/ros2/common_interfaces/blob/master/sensor_msgs/msg/Range.msg] topic with name tof.

All distance sensors are combined to create sensor_msgs/LaserScan [https://github.com/ros2/common_interfaces/blob/master/sensor_msgs/msg/LaserScan.msg] so you can use it directly in SLAM packages.
You can test it as:

ros2 topic echo /scan

The same infra-red sensors act as light sensors.
In the ROS2 driver, data from the sensors is published as sensor_msgs/Illuminance [https://github.com/ros2/common_interfaces/blob/master/sensor_msgs/msg/Illuminance.msg] message (unit is lux) and you can subscribe to it as follows:

ros2 topic echo /ls1

Notice in the image above, there are 8 LEDs as well-positioned around the robot.
LEDs led0, led2, led4 and led6 can be only turned on or off, while LEDs led1, led3, led5 and led7 have controllable RGB components.
Therefore, in the case of binary LEDs, you can test them as:

ros2 topic pub /led0 std_msgs/Bool '{ "data": true }'

and RGB as:

ros2 topic pub /led1 std_msgs/Int32 '{ "data": 0xFF0000 }'

where 3 lower bytes of Int32 represent 3 bytes of R, G and B components.

Velocity Control

Standard geometry_msgs/Twist [https://github.com/ros2/common_interfaces/blob/master/geometry_msgs/msg/Twist.msg] topic with name /cmd_vel is exposed for velocity control.

ros2 topic pub /cmd_vel geometry_msgs/Twist "linear:
 x: 0.1
 y: 0.0
 z: 0.0
angular:
 x: 0.0
 y: 0.0
 z: 0.0"

Note that only linear.x and angular.z are considered as e-puck2 is differential wheeled robot.

Odometry

Standard ROS2 messages nav_msgs/Odometry [https://github.com/ros2/common_interfaces/blob/master/nav_msgs/msg/Odometry.msg] are used to publish odometry data
You can subscribe to it with:

ros2 topic echo /odom

In case you are not interested in covariance matrices, you can use --no-arr parameter to hide arrays:

ros2 topic echo --no-arr /odom

You can also visualise odometry in rviz:

ros2 launch webots_ros2_epuck robot_tools_launch.py rviz:=true

Camera

Camera data and details are described through image_raw (type sensor_msgs/Image [https://github.com/ros2/common_interfaces/blob/master/sensor_msgs/msg/Image.msg]) and camera_info (type sensor_msgs/CameraInfo [https://github.com/ros2/common_interfaces/blob/master/sensor_msgs/msg/CameraInfo.msg]) topics.
Compared to the physical robot driver there is no sensor_msgs/CompressedImage [https://github.com/ros2/common_interfaces/blob/master/sensor_msgs/msg/CompressedImage.msg] since the images are not meant to be transfer thourgh a network.

You can run rqt , navigate to Plugins > Visualization > Image View and for topic choose /image_raw.
Note that the image encoding is BGRA.

IMU

There are 3D accelerometer and 3D gyro hardware on e-puck2.
You can access to this data through imu topic (type sensor_msgs/Imu [https://github.com/ros2/common_interfaces/blob/master/sensor_msgs/msg/Imu.msg]), e.g.:

ros2 topic echo --no-arr /imu

Ground Sensors

Ground sensors come as an optional module [http://www.e-puck.org/index.php?option=com_content&view=article&id=17&Itemid=18] for e-puck2.
If the module is present, the ROS2 driver will automatically detect it and publish data.
You can test them as:

ros2 topic echo /gs1

To put the ground sensor module, select groundSensorsSlot in e-puck2 robot tree, click + button and find E-puckGroundSensors (check out this image).

Transformations

Dynamic transformations are only used for the odometry and you can show it as:

ros2 topic echo tf

All other transformations are static and they are exposed as latched topics, so you can show them with the following command:

ros2 topic echo --qos-profile services_default --qos-durability transient_local tf_static

For general access to transformations you can use tf2_monitor:

ros2 run tf2_ros tf2_monitor

or if you want to read transformation between arbitrary two coordinate frames in a tree:

ros2 run tf2_ros tf2_echo odom map

Navigation

ROS2 Navigation2 stack (see this figure [https://raw.githubusercontent.com/ros-planning/navigation2/eloquent-devel/doc/architecture/navigation_overview.png]) allows us to move robot from point A to point B by creating a global plan and avoiding local obstacles.
It is integrated into e-puck example and you can run it by including nav parameter:

ros2 launch webots_ros2_epuck robot_tools_launch.py rviz:=true nav:=true

or without RViz2 you can just publish a desired pose:

ros2 topic pub -1 /goal_pose geometry_msgs/PoseStamped \"
pose:
 position:
 x: 0.3
 y: 0.0
 z: 0.0
 orientation:
 x: 0.0
 y: 0.0
 z: 0.0
 w: 1.0
"

By default, the navigation will use a epuck_world_map.yaml map available in /webots_ros2_epuck/resource.
To change the map, you have to use the map argument:

ros2 launch webots_ros2_epuck robot_tools_launch.py rviz:=true nav:=true map:=/path/to/your/map.yaml

[image: ../_images/nav2.gif]Demo

This example will work properly only for ROS2 Foxy Fitzroy [https://index.ros.org/doc/ros2/Releases/Release-Foxy-Fitzroy/] and later.

Mapping

Unfortunately, default SLAM implementation doesn’t work well with e-puck.
Therefore, we created a simple mapping node that relies purely on odometry.
You can launch it as a part of the e-puck example launch file by adding mapper parameter:

ros2 launch webots_ros2_epuck robot_tools_launch.py rviz:=true mapper:=true

Drive the robot around (with e.g. teleop_twist_keyboard) to discover as much of the map as possible.
[image: ../_images/mapping.gif]Mapping process

Once you are sattisfied with the result you can save the map as:

ros2 run nav2_map_server map_saver_cli -f $HOME/Pictures/map

Differential Drive Calibration

Based on the rotation speed of each wheel and two constants, distance between the wheels and wheel radius, we can calculate the position of the robot in the local frame.
Therefore, the precision of the position estimation depends a lot on the distance between the wheels and the wheel radius.
Those constants can vary from robot to robot and here we provide a tool to help you to calibrate it (this technique is very similar to the one proposed in “Measurement and Correction of Systematic Odometry Errors in Mobile Robots” [http://www-personal.umich.edu/~johannb/Papers/paper58.pdf]).

First, we want to measure wheel radius and we can achieve it by letting the robot move in a straight line:

ros2 run webots_ros2_epuck drive_calibrator --ros-args -p type:=linear

If the robot overshoots the given distance (default 0.1335m), we should increase the wheel radius, otherwise decrease it:

ros2 param set /epuck_driver wheel_radius 0.0215

Second, to calibrate the distance between the wheel we can let the robot rotate in the spot:

ros2 run webots_ros2_epuck drive_calibrator --ros-args -p type:=angular

If overshoots, the given number of rotations (default 4) then decrease the distance between the wheels, otherwise increase it.

ros2 param set /epuck_driver wheel_distance 0.0514

Third, repeat those two steps until you are satisfied with the precision.

Note that you can measure distance by a tool (e.g. ruler), it is a good initial guess, but with the technique described above, you will achieve much better results.
According to the paper, such techniques can significantly reduce systematic errors (page 4 and 23).

 Rat’s Life

Rat’s Life

Rat’s Life is created to quantify the difference between e-puck physical and simulated in mapping, and navigation.
This means you can replicate the map at your home with LEGO bricks and perform the experiment yourself.
The benchmark is highly inspired by the The Rat’s Life Benchmark: Competing Cognitive Robots [http://www.vernon.eu/euCognition/NA045-3/PerMIS08_SS1-OMichel.pdf] paper .

[image: ../_images/map_webots.png]Webots Map

Mapping

Mapping is based on a custom node simple_mapper, which only relies on the odometry.
You can launch the mapping with the following command:

ros2 launch webots_ros2_epuck rats_life_waypoints_launch.py use_sim_time:=true

Navigation

Navigation utilizes the navigation2 package and pre-built map.
To run the navigation, use the following command:

ros2 launch webots_ros2_epuck rats_life_launch.py use_sim_time:=true

 ROS2 Driver for E-Puck Robot in Webots

ROS2 Driver for E-Puck Robot in Webots

This package adds ROS2 support for e-puck [https://www.gctronic.com/doc/index.php/e-puck2] simulated robot in Webots [https://cyberbotics.com/].
Since ROS2 driver for the physical (epuck_ros2 [https://github.com/cyberbotics/epuck_ros2]) and simulated (webots_ros2_epuck [https://github.com/cyberbotics/webots_ros2/tree/master/webots_ros2_epuck]) robot share the same API you can find more instructions here.

[image: ../_images/mapping.gif]Mapping process

Launching the Simulation

There is a launch file available that starts Webots simulation and e-puck ROS2 driver.

ros2 launch webots_ros2_epuck robot_launch.py

 Changelog for package webots_ros2_examples

Changelog for package webots_ros2_examples

1.0.0 (2020-09-01)

	Added a khepera_driver node

0.0.3 (2020-06-15)

	Added a new subscriber method to the cmd_vel topic to control the robot velocity.

0.0.2 (2019-09-23)

	Initial version

 webots_ros2_examples

webots_ros2_examples

In this package you can find a collection of simple examples.

Thymio II

This package provides a very simple ROS2 node, launch file and simulation for Thymio II robot. It is a good starting point to create your own simulation and ROS2 interface with your own simulated robot.

Launching the Simulation

The package includes a launch file that will start Webots and the node that interfaces Webots and ROS2. This launch file can be called like this:

ros2 launch webots_ros2_examples example.launch.py

[image: ../_images/ros_example.png]Thymio II in Webots
Webots will start with the Thymio II differential wheel robot and the example_controller node will start.
This node acts as a Webots robot controller and publishes the value of the front distance-sensors of the robot on the /sensor topic and provides the /motor topic which can be used to change the speed of each wheel of the robot.

To quit the simulation and stop the launch file, you simply need to close Webots.

Interact with the Robot

Move the Robot

The /motor service can be tested directly using the ROS2 service CLI interface [https://index.ros.org/doc/ros2/Tutorials/Introspection-with-command-line-tools] to move the robot:

ros2 service call /motor webots_ros2_msgs/SetDifferentialWheelSpeed "{ left_speed: 1.0, right_speed: 0.5 }"

Display the Sensor Value

The output of the sensor (/sensor topic) can be displayed directly using the ROS2 topic CLI interface [https://index.ros.org/doc/ros2/Tutorials/Introspection-with-command-line-tools]

ros2 topic echo /sensor

Troubleshooting

If you see import failures or some indications saying that WEBOTS_HOME is incorrectly set, make sure your environment variables are configured for extern controllers [https://www.cyberbotics.com/doc/guide/running-extern-robot-controllers?version=master#environment-variables].

TurtleBot3 Burger

[image: ../_images/turtlebot3_burger.png]TurtleBot3 Burger in Webots

To run the TurtleBot3 Burger simulation you can use the universal launcher:

ros2 launch webots_ros2_core robot_launch.py \
 executable:=webots_differential_drive_node \
 node_parameters:=$(ros2 pkg prefix webots_ros2_examples --share)/resource/turtlebot3_burger.yaml \
 world:=$(ros2 pkg prefix webots_ros2_examples --share)/worlds/turtlebot3_burger_example.wbt

If you have turtlebot3 [https://github.com/ROBOTIS-GIT/turtlebot3] package installed you can start cartographer as (you may need to run the command twice if it fails the first time):

ros2 launch turtlebot3_cartographer cartographer.launch.py \
 use_sim_time:=true

Also, you can start navigation2 using a custom map:

export TURTLEBOT3_MODEL='burger'
ros2 launch turtlebot3_navigation2 navigation2.launch.py \
 use_sim_time:=true \
 map:=$(ros2 pkg prefix webots_ros2_examples --share)/resource/turtlebot3_burger_example_map.yaml

Make sure you set the initial pose by clicking 2D Pose Estimate button in RViz or by executing the following command:

ros2 topic pub --once /initialpose geometry_msgs/msg/PoseWithCovarianceStamped '{
 "header": { "frame_id": "map" },
 "pose": {
 "pose": {
 "position": { "x": 0.0, "y": 0.0, "z": 0.0 },
 "orientation": { "x": 0.0, "y": 0.0, "z": 0.0, "w": 1.0 }
 }
 }
}'

On the official TurtleBot3 website [https://emanual.robotis.com/docs/en/platform/turtlebot3/overview/#turtlebot3] you can find more information about navigation [https://emanual.robotis.com/docs/en/platform/turtlebot3/ros2_navigation2/] and SLAM [https://emanual.robotis.com/docs/en/platform/turtlebot3/ros2_slam/] configuration.

This will expose necessary topics:

$ ros2 topic list -t
/scan [sensor_msgs/msg/LaserScan]
/cmd_vel [geometry_msgs/msg/Twist]
/imu [sensor_msgs/msg/Imu]
/joint_states [sensor_msgs/msg/JointState]
/odom [nav_msgs/msg/Odometry]
/robot_description [std_msgs/msg/String]
/tf [tf2_msgs/msg/TFMessage]
/tf_static [tf2_msgs/msg/TFMessage]

Khepera IV

[image: ../_images/khepera4.png]Khepera IV in Webots

Similarly to the TurtleBot3 Burger you can start the Khepera IV robot as well:

ros2 launch webots_ros2_core robot_launch.py \
 executable:=webots_differential_drive_node \
 node_parameters:=$(ros2 pkg prefix webots_ros2_examples --share)/resource/khepera4.yaml \
 world:=$(ros2 pkg prefix webots_ros2_examples --share)/worlds/khepera4_example.wbt

Or, if you want to have sensor_msgs/LaserScan [https://github.com/ros2/common_interfaces/blob/master/sensor_msgs/msg/LaserScan.msg] topic you have to use a custom driver:

ros2 launch webots_ros2_core robot_launch.py \
 executable:=khepera_driver \
 package:=webots_ros2_examples \
 node_parameters:=$(ros2 pkg prefix webots_ros2_examples --share)/resource/khepera4.yaml \
 world:=$(ros2 pkg prefix webots_ros2_examples --share)/worlds/khepera4_example.wbt

 Changelog for package webots_ros2_importer

Changelog for package webots_ros2_importer

1.0.0 (2020-09-01)

	Added the ‘–multi-file’, ‘–static-base’, ‘–tool-slot’ and ‘–rotation’ arguments.

0.0.3 (2020-06-15)

	Initial version

 Example usage:

Example usage:

urdf import

ros2 run webots_ros2_importer urdf2proto --input=/home/user/ros2_workspace/install/turtlebot3_description/share/turtlebot3_description/urdf/turtlebot3_burger.urdf --disable-mesh-optimization --output=Turtlebot3Burger.proto

xacro import

ros2 run webots_ros2_importer xacro2proto /home/user/ros2_workspace/install/turtlebot3_description/share/turtlebot3_description/urdf/turtlebot3_burger.urdf.xacro --disable-mesh-optimization --output=Turtlebot3Burger.proto

 Contributing

Contributing

We love pull requests from everyone.

Getting Started: Create a Pull Request

	Fork the repository: https://help.github.com/articles/fork-a-repo

	Create a branch in your fork: https://help.github.com/articles/creating-and-deleting-branches-within-your-repository

	Pull the branch as a pull request targeting omichel:urdf2webots@master: https://help.github.com/articles/creating-a-pull-request-from-a-fork

	Wait for our awesome review :-)

Coding Style

	Python should use the PEP8 standard (minus E501):

Note: using Atom with the linter-flake8 linter package ensures that we respect our Python coding styles: apm install linter-flake8.

Source Rules

	Avoid comitting files that exist elsewhere. Instead we should link to the source of these files.

	Avoid comitting files that can be re-created from other files using a Makefile, a script or a compiler.

 urdf2webots

urdf2webots

[image: ../../../_images/urdf2webots.svg]Build Status [https://travis-ci.com/cyberbotics/urdf2webots]

This tool converts URDF files into Webots PROTO files.

Install

From pip

pip install urdf2webots

On macOS, export the pip binary path to the PATH: export PATH="/Users/$USER/Library/Python/3.7/bin:$PATH"

From Sources

git clone https://github.com/cyberbotics/urdf2webots.git
cd urdf2webots
pip install -r requirements.txt

Usage

From pip

python -m urdf2webots.importer --input=someRobot.urdf [--output=outputFile] [--box-collision] [--normal] [--disable-mesh-optimization] [--multi-file] [--static-base] [--tool-slot=linkName] [--help]

From Sources

python demo.py --input=someRobot.urdf [--output=outputFile] [--box-collision] [--normal] [--disable-mesh-optimization] [--multi-file] [--static-base] [--tool-slot=linkName] [--help]

Arguments

The script accepts the following arguments:

	-h, –help: Show the help message and exit.

	–input=INFILE: Specifies the urdf file to convert.

	–output=OUTFILE: If set, specifies the path and, if ending in “.proto”, name of the resulting PROTO file. The filename minus the .proto extension will be the robot name.

	–normal: If set, the normals are exported if present in the URDF definition.

	–box-collision: If set, the bounding objects are approximated using boxes.

	–disable-mesh-optimization: If set, the duplicated vertices are not removed from the meshes (this can speed up a lot the conversion).

	–multi-file: If set, the mesh files are exported as separated PROTO files.

	–static-base: If set, the base link will have the option to be static (disable physics)

	–tool-slot=LinkName: Specify the link that you want to add a tool slot to (exact link name from urdf).

	–rotation=”0 1 0 0”: Set the rotation field of your PROTO file. If your URDF file uses the z-axis as ‘up’, use --rotation="1 0 0 -1.5708".

	–init-pos=JointPositions: Set the initial positions of your robot joints. Example: --init-pos="[1.2, 0.5, -1.5]" would set the first 3 joints of your robot to the specified values, and leave the rest with their default value.

In your Python Code

from urdf2webots.importer import convert2urdf
convert2urdf('MY_PATH/MY_URDF.urd')

In-Depth Tutorial

Check out this tutorial for a more in-depth, step by step instruction, on how to:

	Generate a URDF file from a ROS repository.

	Convert your URDF file to a Webots PROTO file.

	Load your converted model into Webots and make final adjustments.

Notes

This tool have been tested using Webots R2020b on Ubuntu16.04 and Windows.You can find the sources of these URDF files here:

	universal robot: https://github.com/ros-industrial/universal_robot/tree/kinetic-devel/ur_description

	pr2 robot: https://github.com/PR2/pr2_common/tree/kinetic-devel/pr2_description

	motoman robot: https://github.com/ros-industrial/motoman/tree/kinetic-devel/motoman_sia20d_support

	kinova robot: https://github.com/Kinovarobotics/kinova-ros/tree/kinetic/kinova_description

	gait2392 human skeleton: https://github.com/cyberbotics/urdf2webots/tree/master/tests/sources/gait2392_simbody

Acknowledgement

 [image: rosin_logo]

 urdf2webots Tutorial

urdf2webots Tutorial

Prerequisites:

Make sure you have the newest version of urdf2webots installed. If you have an older version installed via pip, use this command:

pip install --no-cache-dir --upgrade urdf2webots

Alternatively, if you want to install from source, follow the instructions in the main README

Get a URDF from a GitHub repository (optional if you already have a URDF)

Example using this Kuka ROS repo:
https://github.com/ros-industrial/kuka_experimental

cd catkin_ws/src
git clone https://github.com/ros-industrial/kuka_experimental
cd ..
catkin_make # or catkin build depending on what you use
source devel/setup.bash

Note: If you want to convert this exact same robot, you will have to replace the file at
kuka_experimental/kuka_lbr_iiwa_support/meshes/lbr_iiwa_14_r820/visual/base_link.dae
with this (original file is corrupted):
base_link.dae [https://drive.google.com/file/d/1J0dVuDOW7k3wa6Gj0vpjKzlNMzQHOAfD/view?usp=sharing]

To follow the below instructions, you’ll need to have the xacro tool installed; some ROS installations don’t include it by default. If you don’t have it, you can install it as follows on Ubuntu (substitute your ROS distribution for “noetic”):

sudo apt install ros-noetic-xacro

Navigate to the launch folder and open the launch file that launches your robot or displays it in Rviz. For this tutorial we chose the KUKA lbr iiwa robot. The launch file is:
/kuka_experimental/kuka_lbr_iiwa_support/launch/load_lbr_iiwa_14_r820.launch
Opening the launch file we look for the line, uploading the robot_description parameter, here it is this line:

<param name="robot_description" command="$(find xacro)/xacro.py '$(find kuka_lbr_iiwa_support)/urdf/lbr_iiwa_14_r820.xacro'" />

This tells us which xacro file and with what parameters we need to generate our URDF from.
Next in your Terminal, navigate to the urdf folder specified in the launch file and enter following command:

cd src/kuka_experimental/kuka_lbr_iiwa_support/urdf
rosrun xacro xacro --inorder -o model.urdf lbr_iiwa_14_r820.xacro

This will compile the URDF from the XACRO file and save it as model.urdf in the same directory. If your launch file added parameters to the XACRO calls, you need to add them here too.

Converting the URDF to a PROTO file

Convert the model.urdf with the following command. I recommend the 2 added parameters:
–box-collision: simplifies objects. This can greatly improve the simulation of object interactions, especially grasping.

–multi-file: puts the mesh data in a separate file. If not set, the proto file becomes huge and very slow and sluggish in all editors / IDEs I tried.

–static-base and –tool-slot=tool0 are more specific for robotic arms. Have a look at all options and explanations below. To figure out, what the –tool-slot=LinkName is called for your robotic arm, you will have to open the model.urdf and figure out what the link is called.

–rotation=”1 0 0 -1.5708” will change the default rotation of the converted model, so that the z-axis points up. If we were not to set this, the robot would spawn sideways when adding to Webots, where the y-axis is “up” by default.

python -m urdf2webots.importer --input=model.urdf --box-collision --multi-file --static-base --tool-slot=tool0 --rotation="1 0 0 -1.5708"

Check the main README for a list of all options.

After your file has been converted, you should have something like this:

[image: ../../../../_images/converted_files.png]converted files

Copy these files to your project’s protos directory (of course you can do this step by using your OS’s GUI):

cp -r KukaLbrIiwa14R820* ~/my_simulation/protos/

Loading converted model in WEBOTS

Launch Webots and your project world. Click on the plus sign to add your model.

[image: ../../../../_images/webots_gui_1.png]add node

You should see your newly converted model under PROTO nodes (Current Project).
Select it and click Add

[image: ../../../../_images/webots_gui_2.png]add model

It should look similar to this:

[image: ../../../../_images/webots_robot.png]add model

If something is not right, such as orientation, right-click on the robot in the Scene Tree and select View PROTO Source.
This should open the PROTO file in Webot’s text editor and should look something like this:

[image: ../../../../_images/kuka_proto.png]add model

The fields in the header correspond to the fields (parameters) we see in the Scene Tree (compare image above and below)

[image: ../../../../_images/kuka_scene_tree.png]add model

For example, in order to change the default orientation of our model, we can change the rotation field in the PROTO file. The following is an example, how it would look like, if we had not parsed the –rotation=”1 0 0 -1.5708” option at the start. Most URDF models use the z-axis as up, while Webots, by default, uses the y-axis as up. In this specific case, change the line:

field SFRotation rotation 0 1 0 0
to
field SFRotation rotation 1 0 0 -1.5708

If these are not the correct values, you can manually adjust the values of your robot node in the scene tree (left side), until the robot is positioned correctly. Then simply copy and paste the values into the PROTO source.

Dont forget to save the file (Ctrl + S). In order to see the changes to your PROTO file in action, either save your world and reload it, or delete the robot and add it again.

 Creative Commons CCBBY 3.0

Creative Commons CCBBY 3.0

License

You are free to distribute, remix, tweak, and build upon this work, even commercially, as long as you credit us for the original creation.

Check license details at http://creativecommons.org/licenses/by/3.0/

Authors

	Delp S.L., Loan J.P., Hoy M.G., Zajac F.E., Topp E.L., Rosen J.M., Thelen D.G., Anderson F.C., Seth A.

	3D, 23 DOF gait model created by D.G. Thelen, Univ. of Wisconsin-Madison, and Ajay Seth, Frank C. Anderson, and Scott L. Delp, Stanford University.

	Lower extremity joint defintions based on Delp et al. (1990).

	Low back joint and anthropometry based on Anderson and Pandy (1999, 2001).

	Planar knee model of Yamaguchi and Zajac (1989).

	Seth replaced tibia translation constraints with a CustomJoint for the knee and removed the patella to eliminate all kinematic constraints; insertions of the quadrucepts are handled with moving points in the tibia frame as defined by Delp (1990).

Publications

	Delp, S.L., Loan, J.P., Hoy, M.G., Zajac, F.E., Topp E.L., Rosen, J.M.: An interactive graphics-based model of the lower extremity to study orthopaedic surgical procedures, IEEE Transactions on Biomedical Engineering, vol. 37, pp. 757-767, 1990.

	Yamaguchi G.T., Zajac F.E.: A planar model of the knee joint to characterize the knee extensor mechanism.” J . Biomecl7. vol. 21. pp. 1-10. 1989.

	Anderson F.C., Pandy M.G.: A dynamic optimization solution for vertical jumping in three dimensions. Computer Methods in Biomechanics and Biomedical Engineering 2:201-231, 1999.

	Anderson F.C., Pandy M.G.: Dynamic optimization of human walking. Journal of Biomechanical Engineering 123:381-390, 2001.

	Hamner, SR, Seth, A, and Delp, SL, Muscle contributions to propulsion and support during running. Journal of Biomechanics, doi:10.1016/j.jbiomech.2010.06.025 (2010)

More Information:

http://simtk-confluence.stanford.edu:8080/display/OpenSim/Gait+2392+and+2354+Models

 Motoman

Motoman

ROS Distro Support

	Indigo	Jade	Kinetic
:——-:	:——:	:—-:	:——-:
Branch	indigo-devel [https://github.com/ros-industrial/motoman/tree/indigo-devel]	jade-devel [https://github.com/ros-industrial/motoman/tree/jade-devel]	kinetic-devel [https://github.com/ros-industrial/motoman/tree/kinetic-devel]
Status	supported	supported	supported
Version	version [http://repositories.ros.org/status_page/ros_indigo_default.html?q=motoman]	version [http://repositories.ros.org/status_page/ros_jade_default.html?q=motoman]	version [http://repositories.ros.org/status_page/ros_kinetic_default.html?q=motoman]

Travis - Continuous Integration

Status: [image: ../../../../../../_images/motoman.svg]Build Status [https://travis-ci.org/ros-industrial/motoman]

ROS Buildfarm

	Indigo Source	Indigo Debian	Jade Source	Jade Debian	Kinetic Source	Kinetic Debian
:——-:	:——————-:	:——————-:	:——————-:	:——————-:	:——————-:	:——————-:
motoman	[image: ../../../../../../_images/icon]not released [http://build.ros.org/view/Isrc_uT/job/Isrc_uT__motoman__ubuntu_trusty__source/]	[image: ../../../../../../_images/icon1]not released [http://build.ros.org/view/Ibin_uT64/job/Ibin_uT64__motoman__ubuntu_trusty_amd64__binary/]	[image: ../../../../../../_images/icon2]not released [http://build.ros.org/view/Jsrc_uT/job/Jsrc_uT__motoman__ubuntu_trusty__source/]	[image: ../../../../../../_images/icon3]not released [http://build.ros.org/view/Jbin_uT64/job/Jbin_uT64__motoman__ubuntu_trusty_amd64__binary/]	[image: ../../../../../../_images/icon4]not released [http://build.ros.org/view/Ksrc_uX/job/Ksrc_uX__motoman__ubuntu_xenial__source/]	[image: ../../../../../../_images/icon5]not released [http://build.ros.org/view/Kbin_uX64/job/Kbin_uX64__motoman__ubuntu_xenial_amd64__binary/]

[image: ../../../../../../_images/%20vendor-brightgreen.png]support level: consortium / vendor [http://rosindustrial.org/news/2016/10/7/better-supporting-a-growing-ros-industrial-software-platform]

ROS-Industrial [http://wiki.ros.org/Industrial] Motoman metapackage. See the ROS wiki [http://wiki.ros.org/motoman] page for more information.

The motoman_experimental [https://github.com/ros-industrial/motoman_experimental] repository contains additional packages.

Contents

Branch naming follows the ROS distribution they are compatible with. -devel
branches may be unstable. Releases are made from the distribution branches
(hydro, indigo).

Older releases may be found in the old ROS-Industrial subversion repository [https://github.com/ros-industrial/swri-ros-pkg]
archive.

 Changelog for package motoman

Changelog for package motoman

0.3.5 (2016-07-03)

	No changes

0.3.4 (2016-07-03)

	Remove deprecated motoman_config pkg. Fix #76 [https://github.com/shaun-edwards/motoman/issues/76].
Has been deprecated since 2014-01-28, see 1257a94b.

	Support for multiple motion group control

	Contributors: gavanderhoorn

0.3.3 (2014-02-07)

	No changes

0.3.2 (2014-01-31)

	Added build dependency on roslaunch to support packages

0.3.1 (2014-01-30)

	Synchronized versions for bloom release

	Updated motoman meta-package to include new packages

	Changed directory name from fs100 to motoman_driver
Fix #2 [https://github.com/shaun-edwards/motoman/issues/2].

	rosbuild motoman stack has been converted to catkin metapackage

	Contributors: Shaun Edwards, gavanderhoorn, jrgnicho

 Changelog for package motoman_driver

Changelog for package motoman_driver

0.3.5 (2016-07-03)

	Cleaned up issues with Changelogs

	Contributors: Shaun Edwards

0.3.4 (2016-07-03)

	driver: remove deprecated ‘robot_interface.launch’ file.
Deprecated since at least Aug-2013 (9acb8550).

	Support for multiple motion group control

	v1.3.4 MotoROS driver
If a multi-group command is being processed, but one of the groups has
a full queue, it will respond with a proper ROS_RESULT_BUSY message. To
keep everything in sync, none of the groups will be processed.

	v1.3.3 MotoROS driver
Improved initialization speed on DX200 controllers.
Updates to the Parameter Extraction library on DX200 allow faster
reading from the controller at startup.

	v1.3.0 MotoROS driver - minor bug fix
Fix expected byte length for multi-group messages

	v1.3.1 MotoROS driver
Added assertion to verify axis-type is valid
Removed commented code line

	v1.3.0 MotoROS driver
Add support for linear axes (such as base track). Linear position
data in Meters.
Fix support for external axes on DX100.
Fix error code returned for an unknown msgType.
Modified the size verification on ROS_MSG_MOTO_JOINT_TRAJ_PT_FULL_EX
messages. You are not required to send data for four groups if you
system doesn’t have that many groups.* correcting comment to match with launch files: dx100 does not use bswap, FS100 does

	Fix Issue #62 [https://github.com/shaun-edwards/motoman/issues/62]: motoman_driver CMakeLists.txt missing motoman_msgs dependencies

	v1.2.5 MotoROS driver
Fix disconnect logic in the State Server
Fixed issue with re-connecting to the State Server after closing
multiple concurrent connections.

	v1.2.4 Update multi-group message id’s

	v1.2.3 Rename subdirectory for DX200 Inform-job
No change actual job; just to folder structure.
Corrected ROS_MSG_JOINT_FEEDBACK_EX message.
This message will only be sent if the controller has more than one
control-group.
Single arm systems will not send this message.

	v1.2.2
Corrected the ROS_MSG_MOTO_MOTION_REPLY when replying to
ROS_MSG_JOINT_TRAJ_PT_FULL_EX. A motion-reply message will be sent for
each control group affected by the multi-group-motion message. The
motion-reply will correctly indicate the control group index for what it
represents

	v1.2.1
Primitive I/O support
Added custom Motoman-specific message for reading and writing a single
I/O point in the controller.
Note: Write-support is limited to only certain addresses in the robot
controller. See wiki for details.
Fixed multiple-arm support for the DX100 controller.

	v1.2.0
Add support for multiple control groups.
Support for SDA robots, or multiple individual robots and/or external
axes.
Add new command message for controlling up to 4 groups.
Add new position-feedback message to send all group data.
Add compatibility for DX200 controller.
Convert MotoPlusIDE projects into Visual Studio solution.
Maintained legacy compatibility for MPIDE.
Improve I/O feedback signals.
Allocate additional signals for future expansion.
Add more cases where feedback signals are used.
Improve error handling
Add additional text and I/O feedback in error cases

	Contributors: Jeremy Zoss, Maarten de Vries, Sachin Chitta, Shaun Edwards, Ted Miller, Thiago de Freitas Oliveira Araujo, gavanderhoorn, thiagodefreitas

0.3.3 (2014-02-07)

	No changes

0.3.2 (2014-01-31)

	No changes

0.3.1 (2014-01-30)

	Synchronized versions for bloom release

	driver: move DEPENDS to CATKIN_DEPENDS. Fix #24 [https://github.com/shaun-edwards/motoman/issues/24].

	driver: link against catkin_LIBRARIES. Fix #23 [https://github.com/shaun-edwards/motoman/issues/23].

	driver: avoid hardcoded python path. Fix #19 [https://github.com/shaun-edwards/motoman/issues/19].

	Update move_to_joint.py

	Add proper install targets to driver pkg.
This fixes #10 [https://github.com/shaun-edwards/motoman/issues/10].

	Added binaries of motoplus driver. These can be directly loaded on the controller

	Added controller specific INFORM files

	Commiting motoplus changes required to support DX100 using new incremental motion interface

	Renamed fs100 package to motoman_driver. The new package now contains drivers for all controllers. Package name reflects new naming convention

	Contributors: Shaun Edwards, Thomas Timm Andersen, gavanderhoorn

 Changelog for package motoman_mh5_support

Changelog for package motoman_mh5_support

0.3.5 (2016-07-03)

	No changes

0.3.4 (2016-07-03)

	Fixed roslaunch test issues

	mh5: remove ‘solid’ from binary visual meshes. Fix #60 [https://github.com/shaun-edwards/motoman/issues/60].
Also removes executable bit (not needed).

	Added comment with old joint limits and explanation.

	Reduced joint_u limits to values measured from an MH5F.

	Reversed MH5 base mesh. Was on backwards.

	New concave meshes. Visuals are full-res, collisions are decimated.

	added missing prefix to links (batch replace)

	Contributors: Dave Hershberger, David Hershberger, Mathias Lüdtke, Shaun Edwards, gavanderhoorn, thiagodefreitas

0.3.3 (2014-02-07)

	No changes

0.3.2 (2014-01-31)

	Added build dependency on roslaunch to address missing roslaunch check missing macro

	Contributors: Shaun Edwards

0.3.1 (2014-01-30)

	Synchronized versions for bloom release

	Generated mh5 and created required urdfs/meshes

	Contributors: Shaun Edwards

 Changelog for package motoman_msgs

Changelog for package motoman_msgs

0.3.5 (2016-07-03)

	No changes

0.3.4 (2016-07-03)

	Support for multiple motion group control

	Contributors: thiagodefreitas

0.3.3 (2014-02-07)

0.3.2 (2014-01-31)

0.3.1 (2014-01-30)

 Changelog for package motoman_sda10f_moveit_config

Changelog for package motoman_sda10f_moveit_config

0.3.5 (2016-07-03)

	No changes

0.3.4 (2016-07-03)

	Support for multiple motion group control

	Contributors: Shaun Edwards, thiagodefreitas

0.3.3 (2014-02-07)

0.3.2 (2014-01-31)

0.3.1 (2014-01-30)

 Changelog for package motoman_sda10f_support

Changelog for package motoman_sda10f_support

0.3.5 (2016-07-03)

	No changes

0.3.4 (2016-07-03)

	Support for multiple motion group control

	Contributors: Shaun Edwards, Thiago de Freitas, thiagodefreitas

0.3.3 (2014-02-07)

0.3.2 (2014-01-31)

0.3.1 (2014-01-30)

 Changelog for package motoman_sia10d_support

Changelog for package motoman_sia10d_support

0.3.5 (2016-07-03)

	No changes

0.3.4 (2016-07-03)

	support: mark SIAx(d|f) pkgs as deprecated.
And point users to the ‘motoman_sia_support’ package, which will be
introduced in Jade.

	added missing prefix to links (batch replace)

	Contributors: Mathias Lüdtke, Shaun Edwards, gavanderhoorn, thiagodefreitas

0.3.3 (2014-02-07)

	No changes

0.3.2 (2014-01-31)

	Added build dependency on roslaunch to address missing roslaunch check missing macro

	Contributors: Shaun Edwards

0.3.1 (2014-01-30)

	Synchronized versions for bloom release

	Added auto-generated sia10d, added urdf/meshes

	Contributors: Shaun Edwards

 Changelog for package motoman_sia10f_support

Changelog for package motoman_sia10f_support

0.3.5 (2016-07-03)

	No changes

0.3.4 (2016-07-03)

	support: mark SIAx(d|f) pkgs as deprecated.
And point users to the ‘motoman_sia_support’ package, which will be
introduced in Jade.

	fixed motoman_sia10f macro name

	First version of the sia10f package

	Contributors: Dave Hershberger, Mathias Lüdtke, Shaun Edwards, gavanderhoorn, ros, thiagodefreitas

0.3.3 (2014-02-07)

0.3.2 (2014-01-31)

0.3.1 (2014-01-30)

 Changelog for package motoman_sia20d_moveit_config

Changelog for package motoman_sia20d_moveit_config

0.3.5 (2016-07-03)

	No changes

0.3.4 (2016-07-03)

	Merge pull request #36 [https://github.com/shaun-edwards/motoman/issues/36] from ros-industrial/hydro
Pulling in changes from Hydro(release) branch.

	sia20d moveit cfg: add missing run_depend on robot simulator. Fix #32 [https://github.com/shaun-edwards/motoman/issues/32].

	Contributors: Shaun Edwards, gavanderhoorn

0.3.3 (2014-02-07)

	Path fix for industrial_core/#22 [https://github.com/shaun-edwards/motoman/issues/22] moveit patch

	Contributors: Shaun Edwards

0.3.2 (2014-01-31)

	No changes

0.3.1 (2014-01-30)

	Synchronized versions for bloom release

	Corrected motoman robot name (added motoman prefix)

	Updated joint limits based on previous arm navigation (acceleration limits are not accurate)

	Created sia20d MoveIt configuration package. Tested in simulation and with fs100 controller

	Contributors: Shaun Edwards

 Changelog for package motoman_sia20d_support

Changelog for package motoman_sia20d_support

0.3.5 (2016-07-03)

	No changes

0.3.4 (2016-07-03)

	support: mark SIAx(d|f) pkgs as deprecated.
And point users to the ‘motoman_sia_support’ package, which will be
introduced in Jade.

	Contributors: Shaun Edwards, gavanderhoorn, thiagodefreitas

0.3.3 (2014-02-07)

	No changes

0.3.2 (2014-01-31)

	Added build dependency on roslaunch to address missing roslaunch check missing macro

	Contributors: Shaun Edwards

0.3.1 (2014-01-30)

	Synchronized versions for bloom release

	Corrected motoman robot name (added motoman prefix)

	Added tool0 to sia20. Matches motoman tool0

	Contributors: Shaun Edwards

 Changelog for package motoman_sia5d_support

Changelog for package motoman_sia5d_support

0.3.5 (2016-07-03)

	No changes

0.3.4 (2016-07-03)

	support: mark SIAx(d|f) pkgs as deprecated.
And point users to the ‘motoman_sia_support’ package, which will be
introduced in Jade.

	sia5d: use meshes in support pkg. Fix #81 [https://github.com/shaun-edwards/motoman/issues/81].
Stop using those in the config package. That has been deprecated since 2014.

	Contributors: Shaun Edwards, gavanderhoorn, thiagodefreitas

0.3.3 (2014-02-07)

	sia5d: remove incorrect safety ctrlr tags. Fix #29 [https://github.com/shaun-edwards/motoman/issues/29].

	Contributors: gavanderhoorn

0.3.2 (2014-01-31)

	Added build dependency on roslaunch to address missing roslaunch check missing macro

	Contributors: Shaun Edwards

0.3.1 (2014-01-30)

	Synchronized versions for bloom release

	Added auto-generated sia5d

	Contributors: Shaun Edwards

 Changelog for package webots_ros2_msgs

Changelog for package webots_ros2_msgs

0.0.2 (2019-09-23)

	Initial version

 Run demo

Run demo

	Open a terminal and go in your R0S2 workspace: cd PATH/TO/ros2_workspace

	Build the package: colcon build --packages-select webots_ros2_tiago

	Source the package: . install/setup.bash

	Launch the demo: ros2 launch webots_ros2_tiago tiago.launch.py

	In another terminal,

	you can publish some velocity commands to control the robot:
ros2 topic pub --once /cmd_vel geometry_msgs/msg/Twist '{linear: {x: 0.5, y: 0.0, z: 0.0}, angular: {x: 0.0, y: 0.0, z: 0.0}}'

	you can use teleop_twist_keyboard to use the keyboard to control the robot:
ros2 run teleop_twist_keyboard teleop_twist_keyboard
but make sure you have the teleop-twist-keyboard package installed.

Topics Overview

$ ros2 topic list -t
/clock [rosgraph_msgs/msg/Clock]
/cmd_vel [geometry_msgs/msg/Twist]
/parameter_events [rcl_interfaces/msg/ParameterEvent]
/rosout [rcl_interfaces/msg/Log]

Velocity

ros2 topic pub --once /cmd_vel geometry_msgs/msg/Twist '{
 linear: {
 x: 0.5,
 y: 0.0,
 z: 0.0
 },
 angular: {
 x: 0.0,
 y: 0.0,
 z: 0.0
 }
}'

Visualization

You can visualize the odometry by running RViz2 in parallel with the driver:

ros2 launch webots_ros2_tiago tiago.launch.py rviz:=true

 Changelog for package webots_ros2_universal_robot

Changelog for package webots_ros2_universal_robot

1.0.0 (2020-09-01)

	Use the webots_ros2_core::webots_robotic_arm_node node

0.0.3 (2020-06-15)

	Added an ‘universal_robot_multiple’ simulation and launch file.

	Added an ‘universal_robot_rviz’ simulation and launch file.

	Added support for the goal tolerance in the action server.

	Fixed the action server that was never reaching the SUCCESSFUL state.

0.0.2 (2019-09-23)

	Initial version

 webots_ros2_universal_robot

webots_ros2_universal_robot

This package provides an interface between ROS2 and the UR3e, UR5e and UR10e simulation models [https://cyberbotics.com/doc/guide/ure] of the Universal Robots [https://www.universal-robots.com] running in Webots.
It includes several simulations of these robots.

universal_robot Node

This node acts as a Webots robot controller.
It publishes the /joint_states topic that represents the state of all the joints of the robot.
And it provides the /follow_joint_trajectory action server that allows you to send joint trajectory action to the robot.

Samples Simulations

The following simulations are provided within this package:

universal_robot

This simulation can be started with the following launch file:

ros2 launch webots_ros2_universal_robot universal_robot.launch.py

[image: ../_images/universal_robot.png]Universal Robot Image
This simulation contains one UR5e robot in a very simple environment.

universal_robot_rviz_dynamic

This simulation uses a new Webots feature to export URDF.
Therefore, you will be able to change the robot model in Webots and to see the changes in RViz.

ros2 launch webots_ros2_universal_robot universal_robot_rviz_dynamic.launch.py

Note that the visual elements are still not supported, only the transforms will be shown.

universal_robot_multiple

This simulation can be started with the following launch file:

ros2 launch webots_ros2_universal_robot universal_robot_multiple.launch.py

[image: ../_images/universal_robot_multiple.png]Multiple Universal Robots
This simulation contains a UR3e and a UR5e robot in a simple factory environment.
This is a very good example showcasing how to use the multi-robots support with the Webots-ROS2 interface.

universal_robot_lidar

This world contains UR5e robot with 3D LiDAR.

ros2 launch webots_ros2_core robot_launch.py \
 executable:=webots_robotic_arm_node \
 world:=$(ros2 pkg prefix webots_ros2_universal_robot --share)/worlds/universal_robot_lidar.wbt

Interact with the Robot

Move the Robot

The /follow_joint_trajectory action server can be tested directly using the ROS2 action CLI [https://index.ros.org/doc/ros2/Tutorials/Introspection-with-command-line-tools] interface to move the robot (if more than one robot is present in the simulation, the action name should be changed, e.g. /UR3e/follow_joint_trajectory):

ros2 action send_goal /follow_joint_trajectory control_msgs/action/FollowJointTrajectory "{
 trajectory: {
 joint_names: [shoulder_pan_joint, shoulder_lift_joint, elbow_joint, wrist_1_joint, wrist_2_joint, wrist_3_joint],
 points: [
 { positions: [3.02, -1.63, -1.88, 1.01, 1.51, 1.13], velocities: [0.1, 0.1, 0.1, 0.1, 0.1, 0.1], accelerations: [0.1, 0.1, 0.1, 0.1, 0.1, 0.1], time_from_start: { sec: 5, nanosec: 500 } },
 { positions: [-1.01, 0.38, -0.63, -0.88, 0.25, -1.63], velocities: [0.1, 0.1, 0.1, 0.1, 0.1, 0.1], accelerations: [0.1, 0.1, 0.1, 0.1, 0.1, 0.1], time_from_start: { sec: 6, nanosec: 500 } },
 { positions: [-1.01, 0.38, -0.63, -0.88, 0.25, 6.2], velocities: [0.1, 0.1, 0.1, 0.1, 0.1, 0.1], accelerations: [0.1, 0.1, 0.1, 0.1, 0.1, 0.1], time_from_start: { sec: 50, nanosec: 500 } }
]
 },
 goal_tolerance: [
 { name: shoulder_pan_joint, position: 0.01 },
 { name: shoulder_lift_joint, position: 0.01 },
 { name: elbow_joint, position: 0.01 },
 { name: wrist_1_joint, position: 0.01 },
 { name: wrist_2_joint, position: 0.01 },
 { name: wrist_3_joint, position: 0.01 }
]
}"

Display the Joint State

The joint state (/joint_states topic) can be displayed directly using the ROS2 topic CLI [https://index.ros.org/doc/ros2/Tutorials/Introspection-with-command-line-tools] interface (if more than one robot is present in the simulation, the action name should be changed, e.g. /UR3e/joint_states):

ros2 topic echo /joint_states

 Changelog for package webots_ros2_ur_e_description

Changelog for package webots_ros2_ur_e_description

0.0.3 (2020-06-15)

	Initial version

 Sources

Sources

These meshes, RVIZ, URDF and XACRO files are copied from ros-industrial/universal_robot [https://github.com/ros-industrial/universal_robot/tree/06d8b9e2f5f86aa54f9f2845f11edbc84e2f951e/ur_e_description].

License

Unlike the other packages of the repo, the files in this package are licensed under the BSD-3 license [https://opensource.org/licenses/BSD-3-Clause].

_images/converted_files.png
- - . / / / /

QTR [T [T briwa_ lbriwa_ lbriwa_ modelurdf
a14R820 a14R820 114R820. 14_r820. 14_r820. 14_r820_
meshes textures proto urdf xacro macro.

Xacro

_images/khepera4.png

_images/abb.png

_images/map_webots.png
|

BLUE | GREEN
ROOM | ROOM

center at approx. (0.25, -02) center at approx. (0.07, -0.2)

_images/mapping.gif

_images/kuka_proto.png
KukalbriiwaldR820proto X

1
2

2

5

5

7 PROTO KukaLbrTiwaldRg2o [

8 field Siec3t tramslation 800
9 field SFRotation rotation 01680
10 field SFstring controller “void"
11 field WFstring controllerargs [1

12 field sFstring customData

3 field SFaool supervisor FALSE
14 field SFaool synchronization TRUE
15 field SFaool selfCollision FALSE
16 field SFaool staticBase FALSE

17 field MFNode toolslot 4]

18]

194

26 Robot {

21 translation 15 translation

22 rotation 15 rotation

3 controller 15 controller

24 controllerArgs 15 controllerArgs
25 custombata 15 customData
26 supervisor 15 supervisor
27 synchronization 15 synchronization
28 selfCollision 15 selfCollision
29 children [
3 base_link OMesh {
3

_images/kuka_scene_tree.png
translation -0.000588 0.121-0.04
rotation 10.00982 -0.00748 0.00
controller "void"

controllerArgs.

customData "™

supervisor FALSE
synchronization TRUE
selfcollision FALSE.

staticBase FALSE

toolslot

_images/nav2.gif

_images/ros_example.png

nav.xhtml

 Table of Contents

 		
 Welcome to Read the Docs

_images/universal_robot.png

_images/universal_robot_multiple.png

_images/sensors_and_leds.png

_images/turtlebot3_burger.png

_images/webots_gui_2.png
‘Add a node

> Base nodes Find:
USE :
~ PROTO nodes (Current Project) (O EERD ()
@ FourWheelsRobot (Robot)

This is a proto file for Webots for the
KukaLbrIiwaldR820 Extracted from: model.urdf
® Mirobot (Robot)
® MirobotV2 (Robot)
> Kukalbriiwa14R820_meshes
> PROTO nodes (Webots Projects)

License: Apache License 2.0 Hore
information.

Import... Cancel Add

_images/webots_robot.png

_images/webots_gui_1.png
@ Worldinfo

® Viewpoint

® TexturedBackground

® TexturedBackgroundLight
® RectangleArena
‘WoodenBox

@ Woodengox

@ Woodengox

@ Epuck

_images/webots_ros2_universal_robot.png

_static/comment-bright.png

_static/comment-close.png

_static/ajax-loader.gif

_static/down.png

_static/comment.png

_static/down-pressed.png

_static/minus.png

_static/plus.png

_static/file.png